从前面章节我们可以知道,Transformer接受的是高维向量(word embedding),而从文本到向量的转换分为两个阶段:分词和embedding化,分别产出token和word embedding。在构建大模型的过程中,token 分词与word embedding扮演着举足轻重的角色。它们不仅是模型理解文本语言的基础,还深刻影响着模型的性能与精度。本篇会介绍如何做好单词到数字的映射,下一篇介绍如何从数字转换到embedding。
声明:小猿资源站是一个资源分享和技术交流平台,本站所发布的一切破解补丁、注册机和注册信息及软件的解密分析文章仅限用于学习和研究目的;不得将上述内容用于商业或者非法用途,否则,一切后果请用户自负。本站信息来自网络,版权争议与本站无关。您必须在下载后的24个小时之内,从您的电脑中彻底删除上述内容。如果您喜欢该程序,请支持正版软件,购买注册,得到更好的正版服务。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。