受到计算机视觉领域采用ImageNet对模型进行一次预训练,使得模型可以通过海量图像充分学习如何提取特征,然后再根据任务目标进行模型微调的范式影响,自然语言处理领域基于预训练语言模型的方法也逐渐成为主流。以ELMo为代表的动态词向量模型开启了语言模型预训练的大门,此后以GPT 和BERT为代表的基于Transformer 的大规模预训练语言模型的出现,使得自然语言处理全面进入了预训练微调范式新时代。